

. Hereditary Prostate Cancer . Genetic Testing

Brooke Overstreet, MS, CGC

Causes of Cancer

Introduction to Genetics

Hereditary Breast and Ovarian Cancer Syndrome Lifetime Cancer Risks (%)

Who is an Appropriate Candidate for Genetic Testing?

Personal History

Prostate cancer at or before age 50

Metastatic prostate cancer

Prostate cancer Gleeson 7 or higher

More than one primary cancer diagnosis

Prostate cancer plus a family history of cancer

Family History

3 or more prostate or other cancers on the same side of the family

Prostate, breast, colorectal or uterine cancer before age 50 in a relative

Male breast or ovarian cancer in a relative

BRCA-Related Cancer Panel Results: Males vs. Females

O

Males with Personal History of Prostate Cancer (N=360)

Ambry Genetics[®]

Bowling et al. ASCO 2016, Chicago IL

Mutations in Various Genes in Prostate Cancer Cohort

Bowling et al ASCO 2016, Chicago IL

How Will Genetic Testing Benefit Patients?

- BRCA1/2 Prostate-Specific Early Detection
 - *BRCA2*: Recommend prostate cancer screening beginning at age 45
 BRCA1: Consider prostate cancer screening beginning at age 45
- Prostate Cancer: Risk-Appropriate Management
 - Given the aggressive nature of BRCA1/2-associated prostate cancer, more aggressive prostate cancer treatment may be considered

Lynparza™ (olaparib) granted Breakthrough Therapy designation by US FDA for treatment of BRCA1/2 or ATM gene mutated metastatic Castration Resistant Prostate Cancer

NCCN Guideline V1.2017 – High-risk breast and ovarian NCCN Guideline V1.2016 – High risk colorectal Haraldsdottir S et al. Genet Med 2014; 16:553-557

How Will Genetic Testing Benefit Patients?

- Beneficial for Family Members
 - Relatives (e.g. daughters, sisters, brothers) can be tested to determine if they inherited the mutation and get appropriate medical management
- Other Cancers: Risk-Appropriate Management
 - Male breast cancer: Annual clinical breast exam and self-breast exam training beginning age 35
 - Pancreatic: Consider referral to GI specialist to discuss pancreatic surveillance protocols (especially if pancreatic cancer in family)
 - Melanoma: Consider annual full-body skin and eye exam (ocular melanoma)

Summary

Prostate cancer can be an indicator for hereditary cancer susceptibility

Identification of a hereditary mutation has <u>prognostic</u>, <u>therapeutic</u>, and <u>familial</u> implications

Talk to your provider about genetic testing

Thank You

Introduction to Genetics

Myth Busters: Hereditary Cancer Impacts Both Men and Women

And yet... who is being tested?

BRCA-Related Hereditary Cancer Panels (N>100,000)

Bowling et al. ASCO 2016, Chicago IL

ProstateNext – 14 gene panel test

	GENE(S)	ASSOCIATED CANCERS AND RISKS
	BRCA1*	Female breast (57-87%), ovarian (39-40%), pancreatic, melanoma, prostate, male breast
	BRCA2*	Female breast (45-84%), ovarian (11-18%), pancreatic, melanoma, prostate (15%), male breast (>6%)
	EPCAM*	Colorectal (52-82%), uterine (12-55%), possibly prostate, other
	MLH1*	Colorectal (52-82%), uterine (25-60%), stomach (6-13%), ovarian (4-12%), prostate (2 fold), other
	MSH2*	Colorectal (52-82%), uterine (25-60%), stomach (6-13%), ovarian (4-12%), prostate (2 fold), other
	MSH6*	Colorectal (20-44%), uterine (up to 44%), prostate (2 fold), other
	PMS2*	Colorectal (15-20%), uterine (15%), possibly prostate, other
	ATM*	Breast (2-4 fold), pancreatic, prostate
	CHEK2*	Breast (2 fold), colorectal, prostate, other
	HOXB13	Prostate
	NBN*	Breast, possibly ovarian, brain, prostate
	PALB2*	Breast (33-58%), pancreatic, ovarian, possibly prostate, male breast
	RAD51D*	Ovarian (10-12%), breast, prostate
_	TP53*	Breast, sarcoma, brain, adrenocortical, leukemia, other
Ambry Genetics [®]		